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Abstract
The Boltzmann–Shannon information entropy of linear potential wavefunctions
is known to be controlled by the information entropy of the Airy function Ai(x).
Here, the entropy asymptotics is analysed so that the first two leading terms
(previously calculated in the WKB approximation) as well as the following
term (already conjectured) are derived by using only the specific properties of
the Airy function.

PACS numbers: 02.30.Gp, 02.30.Mv, 03.65.Ge
Mathematics Subject Classification: 33C10, 41A60, 94A17

1. Introduction

The Boltzmann–Shannon information entropy of an individual microstate of a one-dimensional
physical system is defined by

S[�] := −
∫

|�(x)|2 log|�(x)|2 dx, (1)

where �(x) is the quantum-mechanical wavefunction of the state [1, 2]. The exact computation
of this quantity is a formidable, practically impossible task. This is because either the
Schrödinger equation of the system cannot be exactly solved or, when it is, the wavefunction
is a known special function whose information entropy cannot be analytically evaluated and
its numerical computation is highly unstable. Most efforts have been focused on classical
hypergeometric functions of the type �(x) = √

ω(x)yn(x), where {yn(x); n = 0, 1, . . .}
denotes a set of polynomials orthogonal with respect to the weight function ω(x). In this case,
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the computation of the entropy (1) boils down to evaluating the so-called information entropy
of the orthogonal polynomials yn(x), given by

S[yn] := −
∫

y2
n(x)

[
log y2

n(x)
]
ω(x) dx.

Briefly, up to now, this mathematical quantity has been exactly calculated only for
Chebyshev polynomials and some Gegenbauer polynomials with an integer parameter,
although numerous results for other classical orthogonal polynomials (Hermite, Laguerre,
Jacobi) have been found, mainly from an asymptotical point of view. See [3] for a recent
summary of the main achievements. The numerical computation of this entropic integral on
finite intervals is most conveniently done by the effective method of Buyarov et al [4].

Recently, the evaluation of the physical entropy (1) has been attacked for wavefunctions
controlled by special functions other than orthogonal polynomials. This occurs for systems
such as the circular membrane [5], the Toda-like potential [6] and confining power-type
potential [7]. For these cases the entropy has been evaluated in the asymptotic region, that
is, for highly energetic quantum states, either by using only the properties of the involved
special functions or by means of the semiclassical or WKB approximation. In doing so,
the asymptotics of the information entropies of the Bessel functions [5] and the McDonald
functions [6] have been calculated.

In this paper, we shall consider the computation of the Boltzmann–Shannon entropy for a
linear potential, i.e., for the quantum-mechanical problem of a particle under the influence of
a constant (non-vanishing) force. This potential for a vanishing orbital quantum number and
the harmonic oscillator potential are the only two power-type confinement potentials [8, 9], so
much used with quark models and more particularly with the charmonium model [10] of the
J/ψ particle [11, 12], which are exactly solvable in terms of known special functions. The
linear potential has the same importance in particle physics as the Coulomb potential in atomic
physics and the harmonic potential in solid state physics. In section 2 it is pointed out that the
linear potential wavefunctions for a vanishing orbital quantum number are controlled by the
convergent solutions of Airy’s equation, i.e., by the Airy function Ai(z). So, the calculation
of the physical entropy of the highly energetic states of a particle in the linear potential boils
down to the asymptotics of the information entropy of the Airy function.

The main purpose of this paper is the analytical derivation of the first three terms of this
asymptotics by means of the specific properties of the Airy functions. The structure of this
paper is as follows. In section 3, the asymptotics of the entropy of the Airy function SAi

n is
investigated in detail by using its specific properties. Finally, a brief summary and some open
problems are pointed out.

2. Linear potential wavefunctions and the Airy function: information entropies

The three-dimensional motion of a particle under a linear potential for the case of a vanishing
orbital quantum number reduces to the one-dimensional problem of the potential V (x) = F |x|,
where F denotes the field strength [14, 15]. The wavefunctions of the quantum-mechanical
states of the particle in such a potential are the solutions of the associated Schrödinger equation,

−1

2

d2�(x)

dx2
+ F |x|�(x) = E�(x),

where units h̄ = m = 1 have been used. Various authors (see, e.g., [14, 15]) have shown that
the eigenfunctions can be expressed in terms of the Airy function as

�n(x) =
{

NnAi(α|x| + βn), even n

sign(x)NnAi(α|x| + βn), odd n,
(2)
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where the normalization constant Nn and the parameters βn and α are given by

βn =
{
a′

n/2+1 even n

a(n+1)/2 odd n,

Nn =




√
α

2

1√−βnAi(βn)
even n√

α

2

1

Ai′(βn)
odd n,

α = (2F)1/3,

where as and a′
s are the zeros of the Airy function Ai(x) and its derivative Ai′(x) respectively.

The associated energy eigenvalues are

En = −F

α
βn.

The spreading of the linear potential wavefunctions, �n(x), is best described [1] by
the Boltzmann–Shannon information entropy (1), which gives the spatial distribution of the
associated quantum-mechanical Born density |�n(x, t)|2 = |�n(x)|2. Moreover, it gives the
uncertainty of the position of the particle. Taking into account equation (2), this entropy is
expressed as

S[�n] = −
∫ ∞

−∞
|�n(x)|2 log |�n(x)|2 dx = − log N2

n + 2
N2

n

α
SAi

n , (3)

where SAi
n is the information entropy of the Airy function on the interval [βn,∞):

SAi
n = −

∫ ∞

βn

Ai2(x) log Ai2(x) dx.

3. Entropy asymptotics

Taking into account the asymptotic expansion for the Airy function [16], we have that,
when x � 0,

|Ai(x) − Ai(x)| = O(x−7/4),

where

Ai(x) = (−x)−1/4

√
π

sin

(
2

3
(−x)3/2 +

π

4

)
.

So we can write

SAi
n = −

∫ ∞

βn

Ai2(x) ln Ai2(x) dx

= −
∫ 0

βn

Ai2(x) ln Ai2(x) dx −
∫ ∞

0
Ai2(x) ln Ai2(x) dx

= −
∫ 0

βn

(Ai2(x) ln Ai2(x) − Ai
2
(x) ln Ai

2
(x)) dx

−
∫ 0

βn

Ai
2
(x) ln Ai

2
(x) dx −

∫ ∞

0
Ai2(x) ln Ai2(x) dx
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= −
∫ 0

−∞
(Ai2(x) ln Ai2(x) − Ai

2
(x) ln Ai

2
(x)) dx

+
∫ βn

−∞
(Ai2(x) ln Ai2(x) − Ai

2
(x) ln Ai

2
(x)) dx

−
∫ 0

βn

Ai
2
(x) ln Ai

2
(x) dx −

∫ ∞

0
Ai2(x) ln Ai2(x) dx

= −
∫ 0

βn

Ai
2
(x) ln Ai

2
(x) dx + κ + o(1),

where, since βn tends to −∞ as n increases,∫ βn

−∞
(Ai2(x) ln Ai2(x) − Ai

2
(x) ln Ai

2
(x)) dx = o(1),

and

κ = −
∫ ∞

0
Ai2(x) ln Ai2(x) dx −

∫ 0

−∞
(Ai2(x) ln Ai2(x) − Ai

2
(x) ln Ai

2
(x)) dx

� 0.2265,

is a well-defined constant.
Then,

SAi
n � −

∫ 0

βn

Ai
2
(x) ln Ai

2
(x) dx + κ. (4)

Using the Lq-norm method (see, e.g., [17, 18]) we can write

−
∫ 0

βn

Ai
2
(x) ln Ai

2
(x) dx = −

[
d

dq

∫ 0

βn

(Ai
2
(x))q dx

]
q=1

. (5)

Considering the asymptotics of the zeros βn [16],

as = −T

(
3

8
π(4s − 1)

)
, T (t) ∼ t2/3,

a′
s = −U

(
3

8
π(4s − 3)

)
, U(t) ∼ t2/3,

and the change of variable, x = βn(y/π)2/3, we have∫ 0

βn

(Ai
2
(x))q dx = 1

πq

2

3

(
3

8
(2n + 1)

) 2−q

3

×
[∫ π

0

[
sin2

(
1

2
ny +

1

4
(y + π)

)]q

y− q+1
3 dy

]
+ O(n−1)

= 1

πq

2

3

(
3

4
n

) 2−q

3

[
3

2 − q
π

1−2q

6
�(q + 1

2 )

�(q + 1)
+ τ(q)n

q−2
3

]
+ o(1), (6)

with

τ(q) = 2
2−q

3


∫ π

π
4

(
x − π

4

)− 1+q

3
sin2q x dx − 3

(2 − q)
π−1

∫ π

0

(
x +

π

4

) 2−q

3
sin2q x dx

− 1 + q

3
π

∫ 3
2

1
2

(
{t} − 1

2

)∫ ∞

0

sin2q x dx(
x + πt − π

4

) 4+q

3

dt


 ,
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where the first summand in equation (6) and the expression of τ(q) are proved in the appendix.
Note that {t} is the fractional part of t.

Thus, according to equations (5) and (6), differentiating with respect to q and taking
q = 1, we obtain the additional constant κ ′ in the limit

−
∫ 0

βn

Ai
2
(x) ln Ai

2
(x) dx = C

[
1

3
n

1
3 ln n + Dn

1
3

]
+ κ ′ + o(1), (7)

where C = 1
π

(
3
4π

) 1
3 ,D = 1

3 ln(48π4) − 2, and

κ ′ = − 1

3π

(
2

9

) 1
3
[(

log
4

3
− 3 log π

)
τ(1) + 3τ ′(1)

]
.

The computation of κ ′ leads us to the value κ ′ = 0.1519.
Equations (4) and (7) provide the following asymptotical behaviour of the entropy of the

Airy function,

SAi
n = C

[
1

3
n

1
3 ln n + Dn

1
3

]
+ κ + κ ′ + o(1).

For completeness, let us write down that the Boltzmann–Shannon information entropy
(3) of the linear potential wavefunctions for the highly excited particle state is consequently
given by

S[�n] = 2

3
ln n +

(
ln

(
2(6π)2/3

α

)
− 2

)
+

κ + κ ′

C
n− 1

3 + o(n− 1
3 ).

And the numerical value of the coefficient of n− 1
3 is K = κ+κ ′

C
= 0.8934.

The leading terms were previously computed within the framework of the WKB
approximation by Sánchez-Ruiz [13]. Moreover, the same author, on the basis of some
numerical experiments, also conjectured the following term K ′n′−1/3 with K ′ = 0.709 by
taking into account only the odd-parity eigenfunctions; one can easily find with the same
method that K = 0.8933 when both odd-parity and even-parity levels are considered. Note
that if n′ = 1, 2, 3, . . . is running only over odd states, and n = 1, 2, 3, . . . is running over
even and odd states, K ′n′−1/3 = Kn−1/3 = K(2n′ + 1)−1/3 � K2−1/3n′−1/3, so K = 21/3K ′,
as can be seen from the previous values.

The importance of our work is to have determined and obtained analytically the first three
asymptotical terms for the information entropy of the linear potential by means of only the
specific properties of the involved Airy function.

4. Summary and open problems

We have determined the asymptotics of the information entropy of the Airy function Ai(x),
whose usefulness for the computation of the Boltzmann–Shannon entropy of the highly
energetic (Rydberg) quantum-mechanical states of the linear potential with vanishing angular
momenta is also shown. In doing so, the only existing related results [13], which are based on
the WKB approximation, are rigorously corroborated.

Let us point out, for completeness, that the physical entropies of the non-vanishing
angular momentum Rydberg states of the linear potential [19–21], so useful for the theory of
quark confinement, require previous knowledge of the information entropies of the first-order
derivatives of the Airy function Ai′(x) as well as the combination of Ai(x) and Ai′(x). These
two problems have not yet been solved.
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Appendix

We start with the integral

Iq =
∫ π

0
x− 1+q

3

(
sin2

(
2n + 1

4
x +

π

4

))q

dx.

The change of variable y = x + π
2n+1 , and the notation γ = 1+q

3 allow us to write that

Iq =
∫ π+ π

2n+1

π
2n+1

(
y − π

2n + 1

)−γ
(

sin2

(
2n + 1

4
y

))q

dy.

Now, we make the following partition of the interval of integration:

P =
{

π

2n + 1
,

4π

2n + 1
, . . . ,

4kπ

2n + 1
, . . . , π +

π

2n + 1

}
.

Thus, by integrating in every sub-interval separately and taking into account the periodicity
of the sine function,

Iq =
∫ 4π

2n+1

π
2n+1

(
y − π

2n + 1

)−γ

sin2q

(
2n + 1

4
y

)
dy

+

[ n+1
2 ]−1∑
k=1

∫ 4(k+1)π

2n+1

4kπ
2n+1

(
y − π

2n + 1

)−γ

sin2q

(
2n + 1

4

(
y − 4kπ

2n + 1

))
dy

+
∫ π+ π

2n+1

4[ n+1
2 ] π

2n+1

(
y − π

2n + 1

)−γ

sin2q

(
2n + 1

4

(
y − 4

[
n + 1

2

]
π

2n + 1

))
dy,

with being the integer part of t.
With [t] being the integer part of t now, we perform the following changes of variables in

the three above integrals,

x = 2n + 1

4
y

x = 2n + 1

4

(
y − 4kπ

2n + 1

)

x = 2n + 1

4

(
y − 4

[
n + 1

2

]
π

2n + 1

)
,

respectively. Thus,

Iq =
(

4

2n + 1

)1−γ


 ∫ π

π
4

(
x − π

4

)−γ

sin2q x dx

+
∫ π

0

[ n+1
2 ]−1∑
k=1

(
x + kπ − π

4

)−γ

sin2q x dx + Y0


 , (A.1)
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with

Y0 =
∫ π

4 (2n+2−4[ n+1
2 ])

0

(
x +

[
n + 1

2

]
π − π

4

)−γ

sin2q x dx,

where
(
x +

[
n+1

2

]
π − π

4

)−γ → 0 as n increases, so Y0 = o(1).
In order to continue we need the following lemma:

Lemma. ∑
1
2 <k�n+ 1

2

F(k) =
∫ n+ 1

2

1
2

F(t) dt +
∫ n+ 1

2

1
2

F ′(t)B(t) dt,

where B(t) = {t} − 1
2 .

Proof. Taking the values a = 1
2 , b = n + 1

2 ,m = 0 into the Euler–McLaurin summation
formula,∑
a<k�b

F (k) =
∫ b

a

F (t) dt +
m∑

r=0

(−1)r+1

(r + 1)!
(Br+1(b)F (r)(b) − Br+1(a)F (r)(a))

+
(−1)m

(m + 1)!

∫ b

a

Bm+1(t)F
(k+1)(t) dt

and since the first periodic Bernoulli function is B1(t) = {t} − 1
2 , this expression reduces to

that of the lemma. �

Now, we apply this lemma to the sum involved in equation (A.1),

[ n+1
2 ]−1∑
k=1

(
x + kπ − π

4

)−γ

=
∫ [ n+1

2 ]−1

1
2

(
x + tπ − π

4

)−γ

dt

− πγ

∫ [ n+1
2 ]−1

1
2

(
x + tπ − π

4

)−γ−1
B(t) dt

= π−1

1 − γ

(
x + tπ − π

4

)−γ +1
∣∣∣∣∣
[ n+1

2 ]−1

1
2

− πγ

∫ ∞

1
2

(
x + tπ − π

4

)−γ−1
B(t) dt + Y1,

where

Y1 = πγ

∫ ∞

[ n+1
2 ]−1

(
x + πt − π

4

)−γ−1
B(t) dt.

Note that, as the integrand decreases with t and the interval of integration diminishes with n,
we have Y1 = o(1).

Then,

[ n+1
2 ]−1∑
k=1

(
x + kπ − π

4

)−γ

= π−γ

1 − γ

(
2n + 1

4

)−γ +1
(

1 +
x − π

2 − π
{

n+1
2

}
π 2n+1

4

)−γ +1

− π−1

1 − γ

(
x +

π

4

)−γ +1
− πγ

∫ ∞

1
2

(
x + πt − π

4

)−γ−1
B(t) dt + Y1.
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Taking into account the periodicity of B(t), we can write

[ n+1
2 ]−1∑
k=1

(
x + kπ − π

4

)−γ

= π−γ

1 − γ

(
2n + 1

4

)−γ +1
(

1 +
x − π

2 − π
{

n+1
2

}
π 2n+1

4

)−γ +1

− π−1

1 − γ

(
x +

π

4

)−γ +1
− πγ

∫ 3
2

1
2

∞∑
k=0

(
x + π(t + k) − π

4

)−γ−1
B(t) dt + Y1.

Then, our integral in equation (A.1) becomes

(
4

2n + 1

)−γ +1 ∫ π

0

[ n+1
2 ]−1∑
k=1

(
x + kπ − π

4

)−γ

sin2q x dx

= π−γ

1 − γ

∫ π

0

(
1 +

x − π
2 − π

{
n+1

2

}
π 2n+1

4

)−γ +1

sin2q x dx

−
(

4

2n + 1

)−γ +1
π−1

1 − γ

∫ π

0

(
x +

π

4

)−γ +1
sin2q x dx

−
(

4

2n + 1

)−γ +1

πγ

∫ 3
2

1
2

B(t)

∫ ∞

0

sin2q x dx(
x + πt − π

4

)γ +1 dt,

where we have taken into account the periodicity of sin2q x and some interchanges of signs of
integration and summatory have been done.

Working in the first integral in the second term of the previous expression,

(
1 +

x − π
2 − π

{
n+1

2

}
π 2n+1

4

)−γ +1

= 1 + (1 − γ )
x − π

2 − π
{

n+1
2

}
π 2n+1

4

+ · · · ,

we define

Y2 = π−γ

1 − γ

∫ π

0

(
4(1 − γ )

x − π
2 − π

{
n+1

2

}
(2n + 1)π

+ · · ·
)

sin2q x dx.

Here, as the integrand goes as n−1, Y2 = o(1).
Thus,

Iq = π−γ

1 − γ

∫ π

0
sin2q x dx +

(
4

2n + 1

)−γ +1

×
[∫ π

π
4

(
x − π

4

)−γ

sin2q x dx − π−1

1 − γ

∫ π

0

(
x +

π

4

)−γ +1
sin2q x dx

−πγ

∫ 3
2

1
2

B(t)

∫ ∞

0

sin2q x dx(
x + πt − π

4

)γ +1 dt +
∫ π

0
Y1 sin2q x dx

]
+ Y2 + Y0.

Finally, taking into account the expressions of γ , considering that Y0, Y1 and Y2 are of
order o(1), and that
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0
sin2q x dx =

√
π�

(
q + 1

2

)
�(q + 1)

,

we have

Iq = 3

2 − q
π

1−2q

6
�

(
q + 1

2

)
�(q + 1)

+

(
4

2n + 1

) 2−q

3

×

 ∫ π

π
4

(
x − π

4

)− 1+q

3
sin2q x dx − 3π−1

2 − q

∫ π

0

(
x +

π

4

) 2−q

3
sin2q x dx

− 1 + q

3
π

∫ 3
2

1
2

B(t)

∫ ∞

0

sin2q x dx(
x + πt − π

4

) 4+q

3

dt


 + o(1),

which was used in equation (6).
As a remark, the double integral in the last term of the previous expression can be done

in a straightforward manner just by interchanging the integral signs and integrating first in t.
However, the result is more complicated, involving several integrals with an infinite value, so
that only the sum of them is finite.
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